

1

2

3

Literature

- Good news
- CE exists
- Proved by Arrow and Debreu (1954)
- Bad news
- Existence proof is not algorithmic

Arrow

Debreu

Why is CE existence important?

- $1^{\text {st }}$ Welfare Theorem
- Any CE leads to a Pareto optimal allocation
- Social significance

Nobody can be better off without making somebody worse off

- $2^{\text {nd }}$ Welfare Theorem
- Any Pareto opt outcome can be supported as a CE

7

Timeline

1954-2001

- We are happy. Equilibrium exists. Why bother about computation?
- Sporadic computational results
- Eisenberg-Gail convex program, 1959
- Scarf's computation of approximate fixed point, 1973
- Nenakov-Primak convex program, 1983

8

9

Electronic marketplaces

Fisher economy
Irving Fisher (1891)
Mathematical model of a market

Fisher's apparatus to compute equilibrium prices

Fisher economy

14

16

A buyer's total utility

Total utility of a "bundle" of goods
= Sum of the utilities of individual goods

Optimal bundle of goods maximizes the total utility

Starter problem

- 1 unit of each good; one buyer
- Given: Prices, utility functions, and buyer's budget
- Give an algorithm to compute an optimal bundle for the buyer

18

Fisher market - setup

- Multiple goods, fixed amount of each good
- Multiple buyers, with individual budgets and utilities

Equilibrium/market-clearing allocations and prices

- Demand = supply
- All goods sold out and all money spent
- Each buyer maximizes utility
- Maximizes BPB

21

Equilibrium properties

- A buyer buys a good => maximizes BPB
- Price of a good >0 0 that good is sold out

Can we formulate an optimization routine?

- Does LP work?
- Anything else?

24

Can we formulate this as an LP?

Think about equilibrium allocations $x_{i j}$

$$
\max \sum_{i} u_{i}(x)=\max \sum_{i} \sum_{j} u_{i j} x_{i j}
$$

subject to

$$
\begin{aligned}
& \forall j \quad \sum_{i} x_{i j} \leq 1 \\
& \forall i, j \quad x_{i j} \geq 0
\end{aligned}
$$

This LP doesn't work

- Multiplying all utilities of one buyer by 2 shouldn't change the solution
- But...

Maximize $u_{1}(x)+\sum_{\mathrm{i} \neq 1} u_{i}(x)$ does not necessarily $\operatorname{maximize} 2 u_{1}(x)+\sum_{\mathrm{i} \neq 1} u_{i}(x)$
$\forall j \quad \sum_{i} x_{i j} \leq 1$
$\forall i, j \quad x_{i j} \geq 0$

No LP formulation is known!

26

Main challenge

Review: Fisher model

- Model parameters (what's given)
- n divisible goods (1 unit each wlog)
- n' buyers
- $\boldsymbol{e}_{\boldsymbol{i}}=$ buyer i's budget (integral wlog)
- $u_{i j}=$ buyer i 's utility per unit of good j (int wlog)
- Linear utility functions
- Want (not given):
- $x_{i j}=$ amount of good j that i buys to maximize utility $u_{i}(\mathbf{x})=\sum_{j=1}^{n} u_{i j} x_{i j}$
- $p_{j}=$ price per unit of good j
- No excess demand or supply

Eisenberg-Gale convex program

$$
\begin{aligned}
& \max \sum_{i} e_{i} \log \left(\sum_{j} u_{i j} x_{i j}\right) \\
& \text { subject to } \\
& \sum_{i} x_{i j} \leq 1, \forall j \\
& x_{i j} \geq 0, \forall i, j
\end{aligned}
$$

Solving this gives market-clearing allocations (and prices as dual variables) iff every good gives a positive utility to some buyer.

Equilibrium prices are unique!

Example

2 buyers, 1 good (1 unit of milk)
$\mathrm{u}_{11}=10$ /unit of milk utility

amount of milk

$$
\mathrm{x}^{*}{ }_{11}=\text { ? }
$$

Buyer 2
Budget, $\mathrm{e}_{2}=\$ 50$
$\mathrm{u}_{21}=1$ /unit of milk

Solution

- $x_{11}=2 / 3, x_{21}=1 / 3$

34

Solution

Why $x_{11}=2 / 3, x_{21}=1 / 3$?
Set price of milk = \$150/unit

Primal-dual
 p_{j}

= The price of good j at an equilibrium
= Dual variable corresponding to the primal constraint for good j: $\quad \sum_{i} x_{i j} \leq 1$

Eisenberg-Gale convex program

$$
\max \sum_{i} e_{i} \log \left(\sum_{j} u_{i j} x_{i j}\right)
$$

subject to

$$
\begin{aligned}
& \sum_{i} x_{i j} \leq 1, \forall j \\
& x_{i j} \geq 0, \forall i, j
\end{aligned}
$$

- Lagrange function

$$
L(x, \lambda, \mu)=-\sum_{i} e_{i} \log \sum_{j} u_{i j} x_{i j}+\sum_{j} \lambda_{j}\left(\sum_{i} x_{i j}-1\right)+\sum_{i} \sum_{j} \mu_{i j}\left(-x_{i j}\right)
$$

KKT conditions

- Stationary condition $\frac{e_{i} u_{i j}}{\Sigma_{j} u_{i j} x_{i j}^{*}}=\lambda_{j}^{*}-\mu_{i j}^{*}$

$$
\frac{u_{i j}}{\lambda_{j}^{*}} \leq \frac{\sum_{j} u_{i j} x_{i j}^{*}}{e_{i}}
$$

- Primal feasibility

$$
\begin{aligned}
& \sum_{\substack{i \\
x_{i j}^{*}}} x_{i j}^{*} \leq 1, \forall i, \forall j \\
& \hline
\end{aligned}
$$

- Dual feasibility

$$
\lambda_{i}^{*}, \mu_{i j}^{*} \geq 0, \forall i, j
$$

- Complementary slackness

$$
\begin{array}{ll}
\lambda_{j}^{*}\left(\sum_{i} x_{i j}^{*}-1\right)=0 & \Leftrightarrow \quad \lambda_{j}^{*}>0 \Rightarrow \sum_{i} x_{i j}^{*}=1 \\
\mu_{i j}^{*}\left(-x_{i j}^{*}\right)=0 & \Leftrightarrow x_{i j}^{*}>0=>\mu_{i j}^{*}=0 \\
& \Rightarrow \text { BPB }=\text { total utility/budget }
\end{array}
$$

Theorem: There exist market-clearing allocations (or prices) iff each good has an interested buyer (someone who gets positive utility for that good)

- Theorem 5.1 (AGT pg. 107)
- Prove that if each good has an interested buyer then

1. All goods are sold out
2. Each buyer spends all their money while maximizing their utility

- You prove the reverse direction

41

Example

49

Bang-per-buck = utility/price

Bang-per-buck = utility/price

51

Bang-per-buck = utility/price

Equality subgraph

- Buyer is happiest when they can buy goods in equality subgraph
- How to maximize sales in the equality subgraph at a given price?

Use "max flow"!

53

Idea of the algorithm

Invariant: goods are sold out all the time!

55

